lunes, 24 de enero de 2011

  Para conocer qué es la Nanotecnología, empecemos por aclarar el significado del prefijo "nano": este hace referencia a la milmillonésima parte de un metro. Un átomo es la quinta parte de esa medida, es decir, cinco átomos puestos en línea suman un nanometro. Bien, pues todos los materiales, dispositivos, instrumental, etc., que entren en esa escala, desde 5 a 50 ó 100 átomos es lo que se conoce con el nombre de Nanotecnología.

  ¿Qué es exactamente la nano tecnología y cuál su momento de nacimiento?

  Empezando por el final, yo me remitiría a una conferencia impartida en 1959 por uno de los grandes físicos del siglo pasado, el maravilloso teórico y divulgador Richard Feynman. Por aquél entonces, Feynman ya predijo que había un montón de espacio al fondo (el título original de la conferencia fue “There’s plenty of room at the bottom”) y auguraba una gran cantidad de nuevos descubrimientos si se pudiera fabricar materiales de dimensiones atómicas o moleculares. Hubo que esperar varios años para que el avance en las técnicas experimentales, culminado en los años 80 con la aparición de la Microscopía Túnel de Barrido (STM) o de Fuerza Atómica (AFM), hiciera posible primero observar los materiales a escala atómica y, después, manipular átomos individuales.. Ahora, con respecto a qué es la Nanotecnología, empecemos por aclarar el significado del prefijo “nano”: este hace referencia a la milmillonésima parte de un metro. Para hacernos idea de a qué escala nos referimos, piensa que un átomo es la quinta parte de esa medida, es decir, cinco átomos puestos en línea suman un nanometro. Bien, pues todos los materiales, dispositivos, instrumental, etc., que entren en esa escala, desde 5 a 50 ó 100 átomos es lo que llamamos Nanotecnología.

 
  ¿Y algo de ese tamaño merece el "nombre" de material? ¿no es puro humo?...
 
Sin duda, siguen siendo materiales y tienen su comportamiento específico... sólo que puede ser muy sorprendente. A esa escala las propiedades de los materiales cambian. Desde el color, que viene determinado por unas longitudes de onda demasiado grandes para estos tamaños, hasta propiedades como la conductividad, magnetismo, etc. que, a esa escala, pueden comportarse de modo muy diferente al que estamos acostumbrados a observar en el mundo macroscópico. Esto, en cierto modo, podría parecer un problema: imagina que partes de un material, con unas propiedades conocidas que, sin embargo, cambian completamente a escala nanométrica. ¡Pues es un despiste! Un material cualquiera, a escala óptica, tiene, pongamos cuatrillones de átomos que, juntos, interaccionan y dan como resultado unas determinadas cualidades del material. Cuando esa cifra la reducimos a unos pocos cientos, el salto afecta a la esencia misma del material. En definitiva, las propiedades dependen del tamaño.
  ¿Qué significa poder intervenir a ese tamaño, usando ese instrumental al que has hecho referencia al principio?
  Algo fundamental es que esta tecnología abre la posibilidad de creación de materiales a medida, a través de la manipulación de sus átomos. Y cuando digo manipulación lo digo en sentido estricto: conociendo las propiedades de los átomos, estos se pueden organizar de una determinada manera, uno a uno, como un LEGO, lo que da como resultado materiales de condiciones predeterminadas, que además no tienen por qué existir en la naturaleza. No obstante, a un nivel muy práctico, todavía, salvo excepciones, no se ha introducido la nanotecnología dentro de las fábricas, en una cadena de producción industrial, aunque, como digo, hay ya algunos resultados que sí resultan relativamente asequibles.
¿Cómo por ejemplo?
 
Pues, por ej., en EEUU, para las luces de los estadios se utiliza una aplicación muy específica de esta tecnología, lo que se denomina tubos de carbono de tamaño nanométrico o nanotubos. En Japón, los paneles luminosos también se fabrican ya a partir de materiales semiconductores con nanoestructuras. Como sabes, las bombillas pierden una cantidad de energía enorme en forma de calor (alrededor del 80%, en una bombilla corriente y algo menos en las de tubo). La aplicación de esta tecnología vendría a representar un ahorro muy importante en ese aspecto. También se está investigando para incorporar la misma tecnología a las pantallas planas de los ordenadores o televisores, por su buena capacidad como conductores y emisores de electrones, y un largo etcétera.
  ¿Cuáles son las dificultades para comercializar estos dispositivos?
  En el momento actual, este campo se halla en un estadio que podríamos denominar pre-industrial, a nivel de demostración y diseño de prototipos. EEUU tomó la iniciativa en este campo durante la última etapa del gobierno de Clinton, aprobando un
...las posibilidades que actualmente se adivinan para este tipo de materiales hacen pensar que serán realmente imparables.  Se ha hablado ya de la Tercera Revolución Industrial.

  presupuesto realmente importante para un programa denominado Iniciativa Nacional sobre Nanotecnología, cuyos resultados ya están apareciendo. También la Unión Europea ha incluido la Nanotecnología como una de las áreas clave en su Sexto Programa Marco, iniciado recientemente y que marca las prioridades en investigación de los países europeos para los próximos años. Y evidentemente, también Japón destina importantes recursos a estos estudios. Todos estos saben que estas tecnologías tendrán una aplicación práctica dentro de pocos años, y que estarán presentes en todos los campos de las ciencias. A nivel español, hay bastantes grupos de investigación activos en estos temas, aunque todavía no mucha presencia de las empresas. Quizá no hayan percibido aún que esto no es ciencia-ficción. Esto es absolutamente real... Es cierto que existen condicionantes de tipo social, cultural o económico que, al final, determinan el éxito o fracaso de una nueva tecnología. Sin embargo, las posibilidades que actualmente se adivinan para este tipo de materiales hacen pensar que serán realmente imparables. Se ha hablado ya de la Tercera Revolución Industrial.


¿Es una tecnología muy cara?

Desde el punto de vista de la investigación yo diría que no es de las más caras, ni mucho menos. En lo que respecta a la fabricación industrial, falta todavía bastante para llegar al nivel de rentabilidad, pero se apunta a una producción realmente masiva y con unos costes de producción muy bajos. Este aspecto económico es algo muy distintivo en la Nanotecnología: por la poca energía que consumen los dispositivos derivados y por la facilidad para situarlos en cualquier punto, se espera que acaben estando presentes en todos los objetos y materiales que nos rodean cotidianamente. Los análisis indican que estas tecnologías pueden llegar a revolucionar la economía, los sistemas de producción y los niveles de vida en un futuro inmediato.
Creo que antes mencionaste algunas aplicaciones: sustituir iluminación a gran escala, en las pantallas de los ordenadores, ¿podrías citar más ejemplos?...
Todo lo que uno pueda imaginar. Desde dispositivos nanométricos instalados en la ropa, que, por ej., detecten cambios de temperatura y, entonces, las cualidades del tejido se adapten, o detecten
...en nuestro departamento trabajamos en esta línea... aumentar la capacidad de los discos duros, ordenadores y otros dispositivos en un factor entre 100 y 1000 veces.

  lluvia e igual, pase de comportarse de modo impermeable a permeable o cambien de color en función de la luz..... Otro ejemplo práctico, que es real y que ya se ha experimentado, es un plástico que se auto-regenera cuando se rompe. Su composición nanométrica está formada por esferitas de dos tipos: unas que contienen en su interior una resina y otras que contienen el catalizador correspondiente. Pues bien, cuando se quiebra el plástico también se quiebran estas esferitas cuyos contenidos se mezclan igual que un pegamento epoxy. Piensa en la fatiga de los materiales que se utilizan en la aviación, por ej., y encontrarás una aplicación bastante evidente. Otro ejemplo: dentro de un medicamento, un dispositivo que dosifique su administración controlando que el vertido se realice en un lugar localizado dentro del sistema circulatorio. También en el caso de la Medicina, se espera poder producir sistemas que reparen lesiones (como tumores cancerosos) en los puntos específicos afectados del organismo, o sensores que detecten con gran sensibilidad y precisión la existencia de determinadas moléculas. Todo esto involucra a las ciencias Química y Bioquímica, Biología Molecular y Física y a las tecnologías de la Ingeniería Electrónica y de Proteínas. No obstante, el ejemplo más significativo está increíblemente extendido ya hoy en día: las cabezas lectoras de los discos duros actuales, que tienen un elemento sensor de un espesor nanométrico (de unas pocas capas atómicas). Esta tecnología ha permitido incrementar enormemente la densidad de almacenamiento de datos. En nuestro departamento, por ejemplo, trabajamos precisamente en esta línea, entre otras: aumentar la capacidad de los discos duros, ordenadores y otros dispositivos en un factor entre 100 y 1000 veces.
¿Con qué instalaciones contáis para investigar en estas tecnologías?

Bueno, la UAM tiene una infraestructura razonablemente buena a nivel europeo. A nivel español estamos en el pequeño grupo de las universidades con mejor dotación. Este campus se construyó a principios de los años 70, con un modelo inspirado en la imagen de las principales universidades europeas y norteamericanas, con un profesorado muy joven, y ha tenido siempre una fuerte tradición investigadora. En cuanto a instalaciones específicas, son muchas para citarlas aquí. Hay muchos grupos llevando a cabo investigación en diferentes campos, y cada uno de ellos tiene su instrumental propio, incluyendo microscopios de efecto túnel, difractómetros, magnetómetros, criostatos para muy bajas temperaturas, etc. Pero también hay que resaltar que la propia Universidad posee varios equipos para uso común: un centro de computación científica, microscopios electrónicos, sistemas de nanolitografía e incluso un acelerador de iones de los más modernos del mundo, en la actualidad.


http://www.fisicahoy.com/fisicaHoy/nanotecnologia/nano.html

Nanotecnología y su aplicación en odontología estética y restauradora

Resumen

La tecnología está permitiendo un gran aporte al desarrollo de nuevos biomateriales odontológicos que se pueden usar en la clínica, en este sentido la nanotecnología no solo puede aplicarse a las ciencias biológicas, industria textil, aeroespacial y automotríz así como a la informática, sino también ha podido proyectarse con singular éxito a los biomateriales dentales; en este caso particular a una nueva generación de resinas compuestas.

Introducción

  La tecnología ha permitido mejorar los protocolos de atención que actualmente se utilizan, de ahí la importancia de observar que es lo que está sucediendo en el área de la investigación en las ciencias básicas y como estos desarrollos benefician a nuestra especialidad.
  Como es de nuestro conocimiento, las resinas compuestas usadas en procedimientos restauradores directos presentan en su composición dos fases. Una fase orgánica constituida por Bis-GMA y dimetacrilatos (UDMA) y la otra por una fase inorgánica o de relleno que son partículas de sílice, vidrio o cuarzo. En vista que químicamente ambas fases no son compatibles, es necesario el uso de un agente de acoplamiento (silanos) que les permita su unión. Las resinas también presentan: fotoiniciadores (en la mayoría de los casos, 90%, es canforquinona), aceleradores, así como pigmentos que le imprimen color a las resinas. (1, 2, 3, 4).
  La nanotecnología ha desarrollado una nueva resina compuesta, que se caracteriza por tener en su composición la presencia de nanopartículas que presentan una dimensión de aproximadamente 25 nm y los 'nanoclusters' de aproximadamente 75 nm.



  Se puede observar en el siguiente esquema la presencia de las unidades de nanopartículas y los 'nanoclusters' de la nueva resina compuesta Filtek Supreme (3MESPE).

  Los 'nanoclusters' están formados por partículas de zirconia/silica o nano silica.
  Los 'clusters' son tratados con silano para lograr entrelazarse con la resina.
  La distribución del relleno (cluster y nanopartículas) muestran un alto contenido de carga de 72.5%. (5, 6).
 Las resinas compuestas translúcidas de esta generación se caracterizan por presentar un 78.5% de carga en su composición, por lo tanto, se ha logrado incrementar la resistencia y obtener una resina con mejor o similar manipulación que las resinas híbridas o microhíbridas. (5, 6, 1).

  Microscopía electrónica de barrido de la superficie de la resina compuesta experimental Nautilus (EXM-615), Filtek Supreme.(3MESPE) en donde se observan los “nanoclusters” unidos entre sí.





Propiedades mecánicas

Esta generación de resinas ha sido sometida a pruebas independientes por grupos de investigación en reconocidas universidades de U.S.A. y Europa, demostrando poseer las cualidades mecánicas que un material debe presentar para poder soportar las fuerzas masticatorias (10, 11).
Resistencia compresiva, resistencia flexural, baja contracción de polimerización, resistencia a la fractura, alta capacidad de pulido, adecuado módulo de elasticidad son algunas de las propiedades que han sido evaluados superando las normas de control de calidad (10, 11, 12).

Ventajas clínicas

  Al presentar un menor tamaño de partícula, podremos lograr un mejor acabado de la resina, que se observa en la textura superficial de la misma disminuyendo las posibilidades de biodegradación del material en el tiempo. Además, esta tecnología ha permitido que las cualidades mecánicas de la resina puedan ser lo suficientemente competentes para indicar su uso en el sector anterior y posterior. No debemos dejar de señalar que el hecho de presentar un menor tamaño de las partículas produce una menor contracción de polimerización, garantizando que el estrés producido debido a la fotopolimerización sea menor, generando sobre las paredes del diente una menor flexión cuspídea además de disminuir la presencia de 'microcraks' a nivel de los bordes adamantinos, que son los responsables de la filtración marginal, cambios de color, penetración bacteriana y posible sensibilidad post-operatoria. (10, 11, 12).
Otros aspectos importantes a señalar es que cuenta con colores para caracterizar, dentina, esmalte y translúcidos.
Referente a su manipulación debemos señalar que es adecuada, sin embargo en los translúcidos se ha podido encontrar algo de mayor viscosidad.
Finalmente, se ha considerado en su desarrollo el uso de una guía VITAPAN, guía clásica de colores. (5)

Presentación del Caso Clínico

  Paciente de 55 años de edad de sexo masculino que no presenta contraindicación para recibir tratamiento odontológico. Viene a consulta para ser evaluado.



  Se puede observar una amalgama dental que tiene en boca aproximadamente más de 25 años. Podemos realizar un pulido sobre la superficie de la amalgama con el objetivo de eliminar los productos de corrosión que existen en la superficie.



  Vemos que en los márgenes de la restauración existe fractura y filtración marginal que se observa como un cambio de color alrededor de los márgenes de la restauración. Después de este procedimiento tenemos evidencia de una caries recidivante. Por lo tanto, existe una lesión cariosa en la superficie oclusal de la pieza 2.6.



  Previamente al aislamiento se ha hecho prueba de la oclusión y se ha seleccionado el color de la resina. Se elimina la amalgama con una punta diamantada usando la pieza de alta velocidad.



  Se usa detector de caries (ácido rojo + propilenglicol y agua). Se deja por 10” y luego se lava por 30”. Se termina de remover la dentina cariada haciendo uso de fresas de baja velocidad de carburo tunsgteno o con curetas de dentina.


  Se observa la remoción completa del tejido carioso. Se ha dejado el reborde marginal en la cara mesial. Se cuantifica con una sonda periodontal la profundidad promedio de la cavidad y se decide colocar un material de base para proteger el órgano dentino-pulpar.


  Observamos la pieza dentaria luego de la aplicación del material de base. Se usó un ionómero de vidrio de alta densidad o viscocidad.


  El sistema adhesivo seleccionado corresponde a uno de V generación monofrasco. Se aplica el ácido ortofosfórico por 15” y luego se lava por la misma cantidad de tiempo o más y se 'seca'. No resecar.



  Se coloca el adhesivo de acuerdo a lo sugerido por el fabricante de manera activa, friccionando las paredes piso y borde libre del diente para producir la hibridización del sustrato dentario.


  Se coloca la resina usando la técnica incremental, fotopolimerizando por capas el tiempo sugerido por el fabricante. Se prueba la oclusión y luego se hace el pulido y acabado con fresas laminadas y cauchos abrasivos.

Nanotecnología y Salud (opcional ver)

Nanotecnología odontológica

Las personas nos preocupamos cada vez más por la estética y la salud, lo que supone una mejora en nuestra calidad de vida . Son miles de personas las que en un determinado momento deciden corregir aspectos de su vida e incluso de su físico para poder sentirse mejor con ellos mismos y para poder mejorar física y psicológicamente. En esto la nanotecnología cada vez juega un papel más importante  ya que la tenemos más al alcance de nuestras vidas y podemos optar a ella sin tener que hacer grandes sacrificios o esfuerzos. Cada vez somos más testigos de los avances tecnológicos que existen a nuestro alrededor desde la mejora  y posible superación de enfermedades hasta avances de seguridad en los automóviles, la nanotecnología cada vez a contribuido mas a esto, en la odontológica existen múltiples mecanismos para que podamos hacer de una boca desdentada y con alguna que otra enfermedad, a una boca sana y con una dentadura perfecta.
En nuestra sociedad existen miles de personas con la dentadura postiza y esto ya supone un avance para las personas que por lo motivos que fueren han perdido su dentadura original, este tipo de dentaduras son incomodas para las personas que las llevan y por lo tanto debe existir algo que haga más fácil la adaptación y la fijación de estas dentaduras, pues bien desde la nanotecnología  se ha creado un adhesivo para la dentadura.

Denstplay fue la primera compañía en desarrollar un adhesivo potente para la fijación de las dentaduras en 1993 creo Dyrac PSA como primer adhesivo que combinaba algunas ventajas de monocomponentes con las desventajas de los adhesivos mas potentes, lo que quería conseguir con esto Dentsplay es ser la primera compañía odontológica.
No solo esto ha supuesto un avance en la medicina odontológica también en otros países como Irán se  están utilizando monopartículas de plata para hacer una masa que sirva como empaste dental, ya que se ha descubierto que este tipo de sustancias tiene grandes ventajas como que evitan el desgaste, que son antibacterianas y que son antifungicidas, esto supone un avance revolucionario en  la medicina odontológica, ya que muchas veces los medios que nos pones por el uso se van desgastando y producen una nueva sensación de malestar.
Como podemos ver la nanotecnología odontológica está avanzando a pasos agigantados, lo que proporciona que la visita al dentista no tenga que ser tan frecuente puesto que los métodos que habitualmente estamos conociendo para los avances de este tipo de medicinas son de por vida en la mayoría de los casos.
La mejora de estos sistemas tanto de empastes como de fijación de dentaduras hace que las personas tengas facilidades en sus vidas. Lo que deberíamos preguntarnos es hasta que punto esto es bueno, es decir fijar al cuerpo algo que no es nuestro así como las desventajas que pueden crear en el cuerpo una sustancia que esta formada por plata, esto debe tener a parte de beneficios algún tipo de perjuicio, ya que es algo que nuestro mecanismo no esta acostumbrado a ello.
Tanto en los empastes como en los adhesivos podemos encontrar miles de avances que la nanotecnología cada vez esta poniendo más  a nuestra disposición. Otro de los casos son los implantes que se están llevando a cabo en clínicas de estados unidos, este tipo de implantes tiene según estudios que han hecho un tiempo mas pequeño de curación así como la mejora de la integración ósea que estos llevan consigo.
Cada vez esta la nanotecnología odontológica más en el mercado lo que ahora debemos preguntarnos es si el recargo del dentista será de un valor que seamos incapaces de poder pagar o tendrá un precio al que todos las personas tengamos posibilidad de utilizar, por eso deberemos esperar toda vía un poco hasta que la nanotecnología llegue por fin a todos lo dentistas y podamos utilizar las nuevas innovaciones de este tipo de sistemas que la tecnología cada vez nos ofrece con mayor facilidad.

domingo, 23 de enero de 2011

Nanotecnología y la exploración espacial

En los laboratorios de todo el país, la NASA está apoyando la floreciente ciencia de la nanotecnología. La idea básica es aprender a tratar la materia a escala atómica —poder controlar con la suficiente precisión— átomos individuales y moléculas para diseñar máquinas del tamaño de una molécula, electrónica avanzada y materiales "inteligentes". Si los visionarios están en lo cierto, la nanotecnología podría llevar a robots que usted podría sostener en la yema del dedo, trajes espaciales autorreparables, ascensores espaciales y otros fantásticos dispositivos. El cabal desarrollo de algunas de estas cosas puede llevar más de 20 años; otras están tomando forma en el laboratorio hoy en día.


Pensando en lo pequeño
  Sencillamente, hacer cosas más pequeñas tiene sus ventajas. Imagínese, por ejemplo, que los vehículos de Marte, Spirit y Opportunity, se hubiesen podido construir tan pequeños como un escarabajo, y pudiesen correr rápidamente como éste por rocas y arena, tomando muestras de minerales y buscando evidencia sobre la historia del agua de Marte. ¡Cientos de miles de estos diminutos robots podrían haberse enviado en las mismas cápsulas que llevaron a los dos vehículos del tamaño de un escritorio, permitiendo a los científicos explorar mucha más superficie del planeta —¡e incrementando las probabilidades de encontrar una bacteria marciana fosilizada!


  Pero la nanotecnología va más allá de sólo la reducción deobjetos. Cuando los científicos puedan ordenar y estructurar a voluntad la materia a nivel molecular, nuevas y asombrosas propiedades podrían surgir en cualquier momento.
  Un excelente ejemplo, preferido del mundo nanotecnológico, es el nanotubo de carbono. En estado natural el carbono aparece como grafito —el blando y negro material usado habitualmente en la mina de los lápices— y como diamante. La única diferencia entre los dos es la organización de los átomos de carbono. Cuando los científicos colocan los mismos átomos de carbono en un modelo de "red metálica" y los enrollan en minúsculos tubos de tan sólo 10 átomos de diámetro, los "nanotubos" resultantes adquieren algunas características extraordinarias. Los nanotubos:
tienen 100 veces la resistencia del acero, pero sólo 1/6 de su peso; son 40 veces más fuertes que las fibras de grafito; conducen la electricidad mejor que el cobre; pueden ser conductores o semiconductores (como los microprocesadores del computador), dependiendo de la colocación de los átomos; y son excelentes conductores de calor.
  Actualmente la mayor parte de la investigación mundial en nanotecnología se centra en estos nanotubos. Los científicos han propuesto usarlos en un amplio abanico de aplicaciones: en cables de alta resistencia y bajo peso necesarios para un ascensor espacial; como alambres moleculares para nanoelectrónica; integrados en microprocesadores para ayudar a disipar el calor; y como barras de transmisión y engranajes en nanomáquinas, para mencionar sólo algunos ejemplos.
  Los nanotubos ocupan un lugar relevante en la investigación llevada a cabo en el Centro de Nanotecnología de Ames de la NASA (CNT). El centro se creó en 1997 y actualmente emplea a casi 50 investigadores a tiempo completo.
"Intentamos centrarnos en tecnologías que puedan dar lugar a productos utilizables dentro de unos pocos años a una década," dice el director de CNT, Meyya Meyyappan. "Por ejemplo, estamos mirando cómo los nanomateriales podrían ser utilizados para sostener vida avanzada, secuenciadores de ADN, computadores superpotentes, y pequeños sensores de productos químicos, o incluso sensores del cáncer."
Un sensor químico que ellos desarrollan usando nanotubos volará el próximo año al espacio en una misión de demostración a bordo de un cohete de la Armada. Este diminuto sensor puede detectar cantidades tan pequeña
                       Diseñando el futuro
  Si estas aplicaciones a corto plazo de la nanotecnología parecen impresionantes, las posibilidades a largo plazo son realmente increíbles.
  El Instituto de Ideas Avanzadas de la NASA (NIAC), una organización independiente y financiada por la NASA, ubicada en Atlanta, Georgia, fue creada para promover la investigación avanzada en tecnologías radicales del espacio que tardará de 10 a 40 años en dar sus primeros frutos.
  Por ejemplo, una reciente subvención de NIAC financió un estudio de factibilidad para la nanoindustria —en otras palabras, la utilización de grandes cantidades de máquinas moleculares microscópicas para producir cualquier objeto que se desee, ensamblándolo ¡átomo por átomo!
  Esta subvención de NIAC fue concedida a Chris Phoenix del Centro de Nanotecnología Responsable.
 
  En la página 112 de su informe, Phoenix explica que una "nanofábrica" de esta índole podría producir, dice, piezas de astronaves con precisión atómica, lo cual significa que cada átomo dentro del objeto está colocado exactamente en donde corresponde. La pieza resultante sería extremadamente fuerte, y su forma podría estar dentro de la anchura de diseño ideal con no más de un solo átomo de diferencia. Superficies ultra-lisas no necesitarían limpieza ni lubricación, y prácticamente no sufrirían deterioro por el paso del tiempo. Una tan alta precisión y fiabilidad de las piezas de una astronave es de máxima importancia cuando está en juego la vida de los astronautas.
 
  Aunque Phoenix esbozó algunas ideas de diseño de una nanofábrica de oficina en su informe, reconoce que —a excepción de un "Proyecto Nanhattan" de gran presupuesto, como él lo llama— para una nanofábrica funcional, tardaría como mínimo una década, y probablemente mucho más.
 
  Tomando ejemplo de la biología, Constantinos Mavroides, director del Laboratorio de Bionanorrobótica Computacional del la Universidad del Nordeste, de Boston, está explorando un planteamiento alternativo sobre aplicación de la nanotecnología:
s como unas pocas partes por mil millones de sustancias químicas específicas —tales como gases tóxicos— resultando útil tanto para la exploración espacial como para la defensa del país. CNT también ha desarrollado un modo de utilizar nanotubos para refrigerar los microprocesadores de computadores personales, un reto de primer orden a medida que los CPUs se hacen cada vez más potentes. Esta tecnología de refrigeración ha sido autorizada a una empresa de reciente creación de Santa Clara, California, llamada Nanoconducción, e Intel también ha demostrado interés, dice Meyyappan.


Diseñando el futuro

  Si estas aplicaciones a corto plazo de la nanotecnología parecen impresionantes, las posibilidades a largo plazo son realmente increíbles.
El Instituto de Ideas Avanzadas de la NASA (NIAC), una organización independiente y financiada por la NASA, ubicada en Atlanta, Georgia, fue creada para promover la investigación avanzada en tecnologías radicales del espacio que tardará de 10 a 40 años en dar sus primeros frutos.
Por ejemplo, una reciente subvención de NIAC financió un estudio de factibilidad para la nanoindustria —en otras palabras, la utilización de grandes cantidades de máquinas moleculares microscópicas para producir cualquier objeto que se desee, ensamblándolo ¡átomo por átomo!
Esta subvención de NIAC fue concedida a Chris Phoenix del Centro de Nanotecnología Responsable.
En la página 112 de su informe, Phoenix explica que una "nanofábrica" de esta índole podría producir, dice, piezas de astronaves con precisión atómica, lo cual significa que cada átomo dentro del objeto está colocado exactamente en donde corresponde. La pieza resultante sería extremadamente fuerte, y su forma podría estar dentro de la anchura de diseño ideal con no más de un solo átomo de diferencia. Superficies ultra-lisas no necesitarían limpieza ni lubricación, y prácticamente no sufrirían deterioro por el paso del tiempo. Una tan alta precisión y fiabilidad de las piezas de una astronave es de máxima importancia cuando está en juego la vida de los astronautas.
Aunque Phoenix esbozó algunas ideas de diseño de una nanofábrica de oficina en su informe, reconoce que —a excepción de un "Proyecto Nanhattan" de gran presupuesto, como él lo llama— para una nanofábrica funcional, tardaría como mínimo una década, y probablemente mucho más.
Tomando ejemplo de la biología, Constantinos Mavroides, director del Laboratorio de Bionanorrobótica Computacional del la Universidad del Nordeste, de Boston, está explorando un planteamiento alternativo sobre aplicación de la nanotecnología:
   En lugar de empezar desde cero, las ideas del estudio de Mavroidis financiado por NIAC emplean "máquinas" moleculares y funcionales preexistentes que pueden ser encontradas en toda célula viva: moléculas de DNA, proteínas, enzimas, etc.
  Formadas por una evolución de millones de años, estas moléculas biológicas se encuentran ya completamente adaptadas a la manipulación a escala molecular de la materia, la razón por la cual una planta puede combinar aire, agua y desechos, y producir una jugosa fresa roja, y el cuerpo de una persona puede convertir la cena de la noche pasada en los nuevos glóbulos rojos de hoy. La reorganización de átomos que hace que todo esto sea posible es llevada a cabo por cientos de enzimas y proteínas especializadas, y el DNA guarda el código para llevar a cabo el proceso.
La utilización de estas máquinas moleculares "pre-existentes" —o usándolas como puntos de partida para nuevos diseños— es una derivación popular de la nanotecnología, llamada "bio-nanotecnología".
  "¿Por qué reinventar la rueda?" se pregunta Mavroidis. "La naturaleza nos ha dado toda esta grande y altamente perfeccionada nanotecnología dentro de los seres vivos, así que ¿Por qué no usarla, e intentar aprender algo de ella?"

  Los usos específicos de la bio-nanotecnología que Mavroidis propone en su estudio son muy futuristas. Una idea consiste en cubrir con una especie de "tela de araña" de tubos del grosor de un cabello, llena de detectores bionanotecnológicos, docenas de millas de terreno, para cartografiar con gran detalle el entorno de algún planeta extraterrestre. Otra idea que propone es una "segunda piel" que los astronautas llevarían debajo de sus trajes espaciales, la cual usaría bio-nanotecnología para detectar y reaccionar a la radiación que atravesara el traje, y sellar rápidamente todo corte o pinchazo.
¿Futurista? Sin duda. ¿Posible? Quizás. Mavroidis admite que faltan probablemente décadas para tecnologías semejantes, y que la tecnología del futuro será probablemente muy diferente de como la imaginamos actualmente. De todas formas, cree que es importante que se empiece a pensar ahora en lo que la nanotecnología podría hacer posible dentro de muchos años.
  Considerando que la vida misma es, en cierto sentido, el máximo ejemplo de nanotecnología, las posibilidades son verdaderamente apasionantes.












Nanotecnología Nanociencia


La nanotecnología -la ciencia que permite manipular la materia al nivel del átomo- mejorará nuestra calidad de vida a medio plazo. Según un estudio, su aplicación a la industria, especialmente en la electrónica, los transportes o la sanidad será en la próxima década el motor de la próxima revolución industrial. Neumáticos más resistentes a la abrasión, medios de locomoción propulsados por energías limpias o pruebas diagnósticas hospitalarias que permitirán detectar patologías desde sus comienzos son algunas de estas aplicaciones, que serán visibles antes de 2020.

Según el estudio, efectuado por la Fundación OPTI (Observatorio de Prospectiva Tecnológica Industrial), la nanotecnología aplicada al transporte permitirá el uso de vehículos con menor peso, ya que la aleación de materiales empleados para su fabricación serán más ligeros, especialmente en chasis y carrocería. Prevista para 2015, permitirá reducir el peso de automóviles y aviones en un 30%.
En la energía y el medio ambiente, los nanomateriales resultan cruciales en la implementación de las pilas de combustible y en el control de la captura y liberación de hidrógeno.
En la diagnosis de enfermedades, la nanobiotecnología permitirá detectar patologías como el cáncer y enfermedades cardiovasculares o neurológicas en su estado más inicial. También regulará la toma de medicamentos mediante la administración continuada e inteligente de las dosis.
El estudio destaca también la aplicacián de esta tecnología en sectores como la construcción, la cerámica, el textil o los envases de alimentos. En el primero de estos campos, los nanoaditivos permitirán cementos con propiedades autolimpiantes, antimicrobianas y descontaminantes y nanomateriales avanzados nos protegerán contra incendios y responderán a estímulos como la temperatura, la humedad o la tensión para ofrecer mayor confort. Los nanosensores controlarán la seguridad y el buen estado de las estructuras.
Las cerámicas incorporarán funciones antideslizantes, autolimpiables, antirrayado, antimicrobianas o efectos térmicos.
En el sector textil están previstas fibras más ligeras pero con gran aislamiento térmico, más resistentes al desgaste, a la suciedad, al agua o a las radiaciones ultravioletas.
Por último, en el sector del envasado, se conseguirán envases activos que conservarán el producto e informarán al consumidor sobre su estado.

Nanotecnología Nanociencia


Nanotecnología contra el cáncer


  Un equipo de científicos insertó tubos sintéticos microscópicos, llamados nanotubos de carbono, en las células enfermas tras exponerlos a luz cercana infrarroja usando un láser. De esta forma lograron acabar con las células, mientras que aquellas a las que no les insertaron los tubos no resultaron afectadas.
Los detalles del trabajo realizado en la Universidad de Stanford, en Estados Unidos, se publicaron en la revista especializada Proceedings of the National Academy of Sciences. El investigador Hongjie Dai sostiene que "uno de los problemas de más larga data en la medicina es cómo curar el cáncer sin dañar los tejidos corporales sanos. Los nanotubos de carbono usados por el equipo de Stanford tienen la mitad del ancho de una célula de ADN y miles de ellos caben dentro de una célula.
  Bajo circunstancias normales, la luz cercana infrarroja pasa a través del cuerpo sin dañarlo. Pero los investigadores descubrieron que si exponían a los nanotubos a un rayo láser de luz cercana infra-rroja, éstos se calentaban a unos 70 grados Celsius en dos minutos. Luego insertaron los tubos dentro de las células y hallaron que el calor generado por el rayo láser las destruía rápidamente.
"Es bastante simple y a la vez asombroso. Hemos usado una propiedad intrínseca de los nanotubos para desarrollar una herramienta que destruye el cáncer", explicó el Dr. Dai. El siguiente paso fue encontrar la forma de introducir los nanotubos dentro de las células cancerígenas pero no dentro de las sanas. Esto fue posible debido a que, a diferencia de lo que ocurre en las células normales, la superficie de las células cancerígenas está cubierta con receptores de una vitamina conocida como folate.
  Los científicos creen que todavía es posible mejorar la técnica, por ejemplo incorporando un anticuerpo al nanotubo para atacar una célula cancerígena en particular y ya han comenzado a trabajar para terminar con el linfoma en ratones.

 Afección en mamas

  Investigadores de la Universidad de Cambridge identificaron cuatro genes responsables del desarrollo del cáncer de mama. Un equipo de investigación sobre cáncer de esta universidad utilizó una moderna tecnología, llamada de micromatriz del ADN, que consiste en unos microchips capaces de estudiar la actividad de cientos de genes al mismo tiempo.
Fuentes del equipo investigador informaron de que, antes de que se completara el mapa genético humano, esta investigación habría requerido años, puesto que sólo se podía estudiar un gen al tiempo.
La identificación de los genes causantes del cáncer de mama es vital para encontrar nuevas y mejores formas de combatir la enfermedad.
  Los científicos examinaron tejidos de 53 tumores así como células de cáncer de mama creadas en laboratorio, y concentraron la búsqueda en un grupo concreto de genes del cromosoma ocho, implicados en el desarrollo del cáncer. A continuación utilizaron la técnica de micromatriz del ADN para averiguar cuáles de entre los centenares de genes parecían estar implicados de forma activa en el desarrollo de los tumores.
  De este modo identificaron los genes FLJ14299, C8orf2, BRF2 y RAB11FIP.
Carlos Caldas, responsable de la investigación, explicó que el resultado "no es sólo un avance apasionante para comprender cómo se desarrolla el cáncer de mama, sino que anuncia una nueva era revolucionaria en el descubrimiento de genes relacionados con la enfermedad".
  También anunció que "el próximo paso será observar la función de estos genes para ver qué papel juegan en el cáncer de mama". Una de cada nueve mujeres en todo el mundo desarrolla cáncer de mama a lo largo de su vida.

Nanotecnología: la próxima revolución

  Los productos que incorporan nanotecnología o son manufacturados mediante la misma pasarán del 0,1% actual al 15% en 2015 del total, según un informe de la OCDE que señala que la extensión de esta tecnología se realizará en tres fases. La primera, en la que nos encontramos actualmente, sitúa estos productos en el ámbito industrial. Para 2009 llegará a los mercados electrónicos y en 2010 se extenderá a todos los bienes de consumo.
Aplicaciones muy diversas que se verán incrementadas en unos pocos años por una tecnología con un potencial que indudablemente revolucionará el mundo que nos rodea, la nanotecnología. Se trata del estudio, diseño, creación, síntesis, manipulación y aplicación de materiales, aparatos y sistemas a través del control de la materia en una escala de un nanómetro, aproximadamente una mil millonésima de metro.
  Un estudio elaborado por la Organización de Cooperación y Desarrollo Económico (OCDE) y Allianz Group señala que su desarrollo futuro se producirá en tres fases, estando ya inmersos en la primera de ellas, que se caracteriza por el uso de la nanotecnología principalmente en aplicaciones de industrias punteras desde el punto de vista técnico, como por ejemplo la aeroespacial.

   La segunda fase comenzará a lo largo del 2009, cuando los mercados electrónicos y de las Tecnologías de la Información estén preparados para incorporar las innovaciones en materia de microprocesadores y chips de memoria construidos mediante procesos nanométricos.
A partir del 2010 , la nanotecnología se extenderá a todos los bienes manufacturados, destacando las aplicaciones sanitarias para la salud humana de aplicaciones como biosensores, la dosificación de fármacos en puntos muy concretos o nanodispositivos portadores de medicamentos que curarán selectivamente las células cancerígenas.
Convergencia tecnológica
  El estudio señala que a escala nanométrica, el linde entre disciplinas científicas como la química, la física, la biología, la electrónica o la ingeniería se desdibuja por lo que se produce una convergencia científica cuya consecuencia es una miríada de aplicaciones que van desde raquetas de tenis hasta sistemas energéticos completamente nuevos pasando por medicinas.
Esta dinámica de convergencia científica y multiplicación de aplicaciones hace que los mayores impactos de la nanotecnología surgirán de combinaciones inesperadas de aspectos previamente separados, tal y como pasó con la creación de Internet, resultado de la confluencia entre la telefonía, la televisión o la radio, y la informática.
Cosmética, tejidos y baterías
  A pesar de que, de acuerdo a la cronología del estudio, seguimos en la primera fase de su evolución, la nanotecnología ya está implicada en sectores empresariales tan diversos como el textil, el automovilístico o el de equipamiento electrónico. En la industria del automóvil, se emplea para reforzar los parachoques debido a su potencial para incrementar la resistencia y capacidad de absorción de los materiales y para mejorar las propiedades adhesivas de la pintura.

 
  En el sector textil, la nanotecnología es la solución perfecta para que los países desarrollados puedan competir con las regiones de bajo coste productivo que cada vez están incrementando su trozo del pastel, ya que añade a los tejidos propiedades "inteligentes". Existen proyectos de productos textiles con funcionalidades electrónicas tales como sensores que supervisen el comportamiento corporal, mecanismos de auto-reparación o acceso a Internet.
  En cuanto al sector energético, la nanotecnología es clave en la fabricación de nuevos tipos de baterías con una duración mucho más prolongada, en la fotosíntesis artificial para la generación de energía limpia o en el ahorro energético que supone la utilización de materiales más ligeros y circuitos más pequeños.
  El estudio señala como empresas de cosmética encuentran aplicaciones contra las arrugas basadas en liposomas que transmiten los fármacos a través de la piel o incluso polvos de maquillaje que son nanopartículas que modifican el reflejo de la luz, para impedir apreciar la profundidad de las arrugas.
Miedo a la burbuja
  El estudio indica que los potenciales inversores, escaldados por el fiasco de las puntocom, tienen sus reticencias a la hora de considerar la irrupción de la nanotecnología como la "próxima revolución". Sin embargo, los expertos señalan dos diferencias cruciales que dificultan la formación de una "nanoburbuja".
  La primera de ellas es que el elevado coste y la dificultad que implica hace que su desarrollo se concentre en compañías e instituciones bien financiadas que pueden atraer el conocimiento científico y técnico necesario para comprender sus problemas y oportunidades. La segunda diferencia radica en que los largos periodos de tiempo que requiere pasar de la idea a la comercialización hacen que la nanotecnología sea particularmente inadecuada para ganar dinero rápido.


http://www.portalciencia.net/nanotecno/nanocancer.html

Nanotecnología Nanociencia





   En una conferencia impartida en 1959 por uno de los grandes físicos del siglo pasado, el maravilloso teórico y divulgador Richard Feynman, ya predijo que "había un montón de espacio al fondo" (el título original de la conferencia fue “There’s plenty of room at the bottom”) y auguraba una gran cantidad de nuevos descubrimientos si se pudiera fabricar materiales de dimensiones atómicas o moleculares. Hubo que esperar varios años para que el avance en las técnicas experimentales, culminado en los años 80 con la aparición de la Microscopía Túnel de Barrido (STM) o de Fuerza Atómica (AFM), hiciera posible primero observar los materiales a escala atómica y, después, manipular átomos individuales. Con respecto a qué es la Nanotecnología, empecemos por aclarar el significado del prefijo “nano”: éste hace referencia a la milmillonésima parte de un metro (o de cualquier otra unidad de medida). Para hacernos idea de a qué escala nos referimos, piensa que un átomo es la quinta parte de esa medida, es decir, cinco átomos puestos en línea suman un nanometro. Bien, pues todos los materiales, dispositivos, instrumental, etc., que entren en esa escala, desde 5 a 50 ó 100 átomos es lo que llamamos Nanotecnología. 

    Su impacto en la vida moderna aún parece una historia de ciencia ficción. Fármacos que trabajan a nivel atómico, microchips capaces de realizar complejos análisis genéticos, generación de fuentes de energía inagotables, construcción de edificios con microrrobots, combates de plagas y contaminación a escala molecular, son sólo algunos de los campos de investigación que se desarrollan con el uso de la nanotecnología, conocimiento que permite manipular la materia a escala nanométrica, es decir, átomo por átomo.

  Considerado por la comunidad científica internacional como uno de los más "innovadores y ambiciosos" proyectos de la ciencia moderna, la nanotecnología tiene su antecedente más remoto en un discurso pronunciado en diciembre de 1959 por el físico Richard Feynman, ganador del Premio Nobel, quien estableció las bases de un nuevo campo científico.

   Vinculado a la investigación científica desarrollada por las principales instituciones públicas de educación superior, la nanotecnología fomenta un modelo de colaboración interdisciplinario en campos como la llamada nanomedicina -aplicación de técnicas que permitan el diseño de fármacos a nivel molecular-, la nanobiología y el desarrollo de microconductores.

  Apenas una década
 A pesar de que hace sólo una década que comenzó el "despegue mundial" de este nuevo campo científico, hoy existen cerca de 3 mil productos generados con nanotecnología, la mayoría para usos industriales, aunque las investigaciones más avanzadas se registran en el campo de la medicina y la biología.

  La nanotecnología, es un campo científico que requiere de una colaboración multidisciplinaria muy estrecha que impida que los países menos desarrollados sigan rezagados ante los niveles alcanzados en Estados Unidos, Inglaterra y Japón, donde existe una opinión generalizada de que el futuro de la ciencia y el bienestar que pueda alcanzar la humanidad en un futuro está estrechamente vinculado con nuevas técnicas a nivel molecular.
Hoy día, este campo científico está orientado a la ciencia molecular que hace posible diseñar microchips electrónicos capaces de identificar en sólo ocho minutos, al colocar una gota de sangre, las enfermedades que padeció la familia del paciente y a cuáles puede ser propenso, así como el diseño de modernos fármacos capaces de atacar el cáncer a nivel atómico sin causar daño a las células sanas.

 Realidad o ciencia ficción 

  Sin embargo, a pesar de que se avanza continuamente en el diseño de nuevos medicamentos y técnicas con capacidad de manipular la materia átomo por átomo, no existen fechas precisas para que todos estos adelantos sean una realidad en la vida cotidiana de millones de personas, pues la ciencia, al igual que el arte, también tiene a la imaginación y la creatividad como motores.
  Algunas de las investigaciones más recientes en la búsqueda de tratamientos alternativos contra el cáncer fueron difundidas por un grupo de investigadores estadunidenses. En ellas se usaron nanopartículas de oro para el tratamiento del mal, lo que representa un gran logro para el combate contra esta enfermedad, a pesar de que puedan transcurrir varios años antes de su aplicación en seres humanos.

  Actualmente, muchos productos generados por la nanotecnología han sido aplicados a la vida cotidiana de millones de personas, como el uso de materiales más livianos y resistentes, catalizadores con nanopartículas de platino en los vehículos para hacer más eficiente el consumo de combustible, hasta tecnología de punta en el desarrollo de proyectos espaciales.
  La nanotecnología y el conocimiento de los procesos biológicos, químicos y físicos a nivel molecular, se convertirán en una de las revoluciones científicas más importantes para la humanidad, la cual debe ser difundida e incorporada en la sociedad con una amplia participación y apoyo por parte del Estado y la iniciativa privada

  La "excelente" calidad de las investigaciones desarrolladas por especialistas requiere de mayor impulso financiero que garantice el futuro de importantes proyectos y de un cambio en la cultura científica que permita que la mayoría de la población conozca el potencial de un nuevo campo científico que puede cambiar el futuro de la humanidad.
 
  El principal reto será incorporar la nanotecnología como un nuevo campo multidisciplinario vinculado estrechamente a la sociedad, tanto por sus aplicaciones como por su potencialidad para resolver los problemas más urgentes, como el acceso a recursos energéticos, agua o alimentos.
A ello se suma la falta de interés de importantes sectores de la iniciativa privada que pueden participar en el desarrollo de una tecnología moderna y eficiente que repercutirá tanto en la calidad de vida de las personas como en el consumo de diversos artículos.
Sin un programa de divulgación que informe a la sociedad y al sector industrial de los avances que puede generar la nanotecnología, se agudizará el rezago científico en el que se ubican muchos de los países en desarrollo, a pesar de tener un cuerpo científico altamente capacitado, pero sin recursos ni difusión.